3.4.57 \(\int \frac {(a+b \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [357]

Optimal. Leaf size=126 \[ -\frac {2 \left (2 a A b+a^2 B-b^2 B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 \left (a^2 A+3 A b^2+6 a b B\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 a^2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

[Out]

-2*(2*A*a*b+B*a^2-B*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))
/d+2/3*(A*a^2+3*A*b^2+6*B*a*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^
(1/2))/d+2/3*a^2*A*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2*a*(2*A*b+B*a)*sin(d*x+c)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 126, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {3067, 3100, 2827, 2720, 2719} \begin {gather*} \frac {2 \left (a^2 A+6 a b B+3 A b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}-\frac {2 \left (a^2 B+2 a A b-b^2 B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a (a B+2 A b) \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(5/2),x]

[Out]

(-2*(2*a*A*b + a^2*B - b^2*B)*EllipticE[(c + d*x)/2, 2])/d + (2*(a^2*A + 3*A*b^2 + 6*a*b*B)*EllipticF[(c + d*x
)/2, 2])/(3*d) + (2*a^2*A*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (2*a*(2*A*b + a*B)*Sin[c + d*x])/(d*Sqrt[Co
s[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3067

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^2*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*c - A*d)*(b*c - a*d)^2*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(
f*d^2*(n + 1)*(c^2 - d^2))), x] - Dist[1/(d^2*(n + 1)*(c^2 - d^2)), Int[(c + d*Sin[e + f*x])^(n + 1)*Simp[d*(n
 + 1)*(B*(b*c - a*d)^2 - A*d*(a^2*c + b^2*c - 2*a*b*d)) - ((B*c - A*d)*(a^2*d^2*(n + 2) + b^2*(c^2 + d^2*(n +
1))) + 2*a*b*d*(A*c*d*(n + 2) - B*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b^2*B*d*(n + 1)*(c^2 - d^2)*Sin[e + f*x
]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d
^2, 0] && LtQ[n, -1]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {(a+b \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx &=\frac {2 a^2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2}{3} \int \frac {-\frac {3}{2} a (2 A b+a B)-\frac {1}{2} \left (a^2 A+3 A b^2+6 a b B\right ) \cos (c+d x)-\frac {3}{2} b^2 B \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {4}{3} \int \frac {\frac {1}{4} \left (-a^2 A-3 A b^2-6 a b B\right )+\frac {3}{4} \left (2 a A b+a^2 B-b^2 B\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 a^2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {1}{3} \left (-a^2 A-3 A b^2-6 a b B\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\left (2 a A b+a^2 B-b^2 B\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=-\frac {2 \left (2 a A b+a^2 B-b^2 B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 \left (a^2 A+3 A b^2+6 a b B\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 a^2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.23, size = 105, normalized size = 0.83 \begin {gather*} \frac {2 \left (-3 \left (2 a A b+a^2 B-b^2 B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\left (a^2 A+3 A b^2+6 a b B\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\frac {a (a A+3 (2 A b+a B) \cos (c+d x)) \sin (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}\right )}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(5/2),x]

[Out]

(2*(-3*(2*a*A*b + a^2*B - b^2*B)*EllipticE[(c + d*x)/2, 2] + (a^2*A + 3*A*b^2 + 6*a*b*B)*EllipticF[(c + d*x)/2
, 2] + (a*(a*A + 3*(2*A*b + a*B)*Cos[c + d*x])*Sin[c + d*x])/Cos[c + d*x]^(3/2)))/(3*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(649\) vs. \(2(170)=340\).
time = 0.56, size = 650, normalized size = 5.16

method result size
default \(-\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\frac {2 B \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+\frac {2 A \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+\frac {4 B a b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {2 B \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+2 a^{2} A \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{6 \left (-\frac {1}{2}+\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )+\frac {2 a \left (2 A b +a B \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(650\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*B*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d
*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2
))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+2*A*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/
2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+4*B*a*b*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*El
lipticF(cos(1/2*d*x+1/2*c),2^(1/2))-2*B*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2*a^2*A*(-1/6*cos(1/2*
d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1/2+cos(1/2*d*x+1/2*c)^2)^2+1/3*(sin(1/2*d*x
+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellipt
icF(cos(1/2*d*x+1/2*c),2^(1/2)))+2*a*(2*A*b+B*a)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1
/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^2/cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.12, size = 255, normalized size = 2.02 \begin {gather*} \frac {\sqrt {2} {\left (-i \, A a^{2} - 6 i \, B a b - 3 i \, A b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (i \, A a^{2} + 6 i \, B a b + 3 i \, A b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (i \, B a^{2} + 2 i \, A a b - i \, B b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (-i \, B a^{2} - 2 i \, A a b + i \, B b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (A a^{2} + 3 \, {\left (B a^{2} + 2 \, A a b\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

1/3*(sqrt(2)*(-I*A*a^2 - 6*I*B*a*b - 3*I*A*b^2)*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin
(d*x + c)) + sqrt(2)*(I*A*a^2 + 6*I*B*a*b + 3*I*A*b^2)*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c)
- I*sin(d*x + c)) - 3*sqrt(2)*(I*B*a^2 + 2*I*A*a*b - I*B*b^2)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstras
sPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2)*(-I*B*a^2 - 2*I*A*a*b + I*B*b^2)*cos(d*x + c)^2*w
eierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(A*a^2 + 3*(B*a^2 + 2*A*a
*b)*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**2*(A+B*cos(d*x+c))/cos(d*x+c)**(5/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 5990 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^2/cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

Mupad [B]
time = 2.29, size = 194, normalized size = 1.54 \begin {gather*} \frac {2\,A\,b^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,b^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,B\,a\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,A\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,B\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {4\,A\,a\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x))^2)/cos(c + d*x)^(5/2),x)

[Out]

(2*A*b^2*ellipticF(c/2 + (d*x)/2, 2))/d + (2*B*b^2*ellipticE(c/2 + (d*x)/2, 2))/d + (4*B*a*b*ellipticF(c/2 + (
d*x)/2, 2))/d + (2*A*a^2*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(si
n(c + d*x)^2)^(1/2)) + (2*B*a^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2
)*(sin(c + d*x)^2)^(1/2)) + (4*A*a*b*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)
^(1/2)*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________